
TYPO3 Documentation
Release 1.0.0

Elmar Hinz

June 07, 2016

Contents

1 Introduction 1
1.1 What it is not . 1

1.1.1 No Boost in Performance . 1
1.2 What it is . 1

1.2.1 Standalone Usage . 1
1.2.2 Improving the error detection . 1
1.2.3 New Architecture . 2
1.2.4 Condition Preprocessor . 2
1.2.5 Public Presentation . 2

1.3 Differences . 2

2 Screenshots 3
2.1 Line numbering . 3
2.2 Types of errors . 3

3 Administration 5
3.1 Technical Implementation . 5

4 Research 7
4.1 CoreTypoScriptParserTyposcriptParser . 7

4.1.1 Overview . 7
4.1.2 Conditions . 7
4.1.3 Line numbering . 7
4.1.4 Error handling . 7
4.1.5 Syntax highlighting . 8
4.1.6 Breakpoints . 8

4.2 TemplateService . 8
4.3 ExtendedTemplateService . 8

5 Lessons Learned 9
5.1 Time to parse the templates vs. time to parse TypoScript . 9
5.2 Non-Recursive Parser . 9
5.3 Original TypoScript Parser . 9
5.4 JSON Parser . 9

6 Known Issues 11
6.1 No Exceptions are Thrown . 11
6.2 Intolerant for Insane TS . 11

i

ii

CHAPTER 1

Introduction

This extensions ships a TypoScript parser, that is suited to replace the original TypoScript parser for frontend rendering.
In fact a family of parsers has been introduced, specialized on different tasks.

• FE: TypoScriptConditionsProcessor

• FE: TypoScriptProductionParser

• BE: TypoScriptSyntaxParser

1.1 What it is not

1.1.1 No Boost in Performance

The parsing of TypoScript just takes a few milliseconds. Hence, it’s not the primary goal to speed up the perfor-
mance but to improve the architecture. The algorithm is twice as fast as the original algorithm, but with the split into
conditions proprocessor and processor the time is about the same again.

1.2 What it is

1.2.1 Standalone Usage

It’s possible to use the TypoScript parser standalone outside of the TYPO3 CMS if you like the TypoScript syntax and
want to use it for configuration in other fields. This is possible with or without the conditions preprocessor.

1.2.2 Improving the error detection

The error detection covers the error detection of the origional parser and tries be be a little better already. Also the
displaying of the line numbers has been worked upon. See Screenshots!

Having done this prove of concept that the replacement of the original syntax highlighter can be done further debugging
features are planned:

• Do syntax highlighting of conditions, instead of printing them in one color.

• Detect the difference of objects and properties, because only objects are allowed ot be copied by reference.

• (Related) Throw verbose errors from TS objects, catch them and and display them into the backend.

1

TYPO3 Documentation, Release 1.0.0

1.2.3 New Architecture

The reason to write a new TypoScript parser is, to get a modern architecture for it:

• easy to understand

• easy to debug

• easy to extend

A modern parser makes it more easy to get rid of flaws in TypoScript and to add new features like if-else conditions,
that work the way you are used to from other languages or enhance error debugging.

1.2.4 Condition Preprocessor

Condition evaluation is done by a preprocessor. By separtion of the condition preprocessing it becomes possible to
use the TypoScript parser without bothering with conditions and focus on it’s task.

On the other hand by isolating the conditions it becomes possible to enhance the condition preprocessing easily. For
example it becomes easy to introduce an [ELSEIF] element.

As with the old parser the condition matching is handled by a third object. Exchanging this object enables the devel-
opment of conditions, that address a completly different field than the TYPO3 CMS.

1.2.5 Public Presentation

This is a public presentation of the parser. Should it replace the old parser of the core? If yes, it needs to be tested in
the wild before until it is really stable. This is the extension to do so.

1.3 Differences

• Backslash doesn’t escape anything.

• Escaping of dots in object keys is not supported.

• Backslash is an allowed character in the keys (for PHP namespaces).

2 Chapter 1. Introduction

CHAPTER 2

Screenshots

2.1 Line numbering

Fig. 2.1: The line numbers show the numbering of the template and the overall numbering within the template tree.

Fig. 2.2: When line numbering is turned off the error messages contain the line number instead.

Fig. 2.3: When line numbering is turned on the error messages don’t duplicate the information.

2.2 Types of errors

3

TYPO3 Documentation, Release 1.0.0

Fig. 2.4: For invalid lines it is assumed that the user want’s to enter an operator line. It is checked for invalid key and
operator.

Fig. 2.5: Braces in access are shown in the line where they occur.

Fig. 2.6: Missing closing braces are detected at conditions and at the end of the template.

Fig. 2.7: An unclosed multiline comment is detected at the end of the template. Multiline comments can be used to
comment out parts of the script. Included elements like conditions don’t result in an error.

Fig. 2.8: An unclosed multiline value is detected at the end of the template.

4 Chapter 2. Screenshots

CHAPTER 3

Administration

Install the extension, clear caches and check of your frontend is rendered as expected and if you get the advanced error
feedback in the backend.

If anything goes wrong, uninstall and report the issue.

https://github.com/elmar-hinz/TX.tsp/issues

3.1 Technical Implementation

The origional parser is not fully replaced but extended by XCLASS registration. The extended class serves as adapter
to the standalone classes.

5

https://github.com/elmar-hinz/TX.tsp/issues

TYPO3 Documentation, Release 1.0.0

6 Chapter 3. Administration

CHAPTER 4

Research

4.1 CoreTypoScriptParserTyposcriptParser

4.1.1 Overview

The method parse() is a preprocessor that handels including and excluding of template parts by condtions.

It doesn’t parse the incoming lines to end first, but delegates the parts immediately to parseSub() (a kind of depth-
first parsing of the template tree).

The method doSyntaxHighlight() is responsible to generate a syntax highlighted HTML string. It also calls the
preprocessor parse() but sets a flag, that disables the coditions, so that all parts are evaluated.

The latter is strange in two aspects. It doesn’t make sense to send syntax highlighting through a conditioning prepro-
cessor. It doesn’t make sense to parse into an array tree, when one actually want’s a HTML string as result.

4.1.2 Conditions

Inn the method parse() the template is branched into rendered and non-rendered parts based on conditions. The
condition evalutation is delegated to a $matchObj that is injected by parameter.

For each condition the method creates a hash and stores it into $this->sections array. This are used by the
TemplateService to cache the rendered templates matching combinations of conditions that evaluate to true.

4.1.3 Line numbering

There is a line number offset that sums up the line numbers of previously rendered templates. It is advanced at end of
parse().

The line numbers of the current template are tracked by $this->rawP in the main loop of parseSub() and also
for the condition sections that evaluate to false in the method nextDivider(). $this->rawP is reset to zero at
the beginning of the rendering of the current template in the method parse().

4.1.4 Error handling

method error($errorString, $severity = 2).

This method collects into $this->errors[] = [a, b, c, d] with:

• a = error message

7

TYPO3 Documentation, Release 1.0.0

• b = severity

• c = line number

• d = template line number offset

Collected messages:

• ‘Script is short of XXX braces.’

• ‘An end brace is in excess.’

• ‘On return to [GLOBAL] scope, the script was short of XXX braces.’

• ‘A multiline value section is not ended with a parenthesis!’

• ‘Object Name String, contains invalid character XXX. Must be alphanumeric or one of: “_:-.”.’

• ‘Object Name String XXX was not followed by any operator, =<>({‘

• ‘### ERROR: XXX’ (Error to be extract form an error comment created in previous parsing steps like during
template includes.)

4.1.5 Syntax highlighting

Highlighted parsing is controlled by the method doSyntaxHighlight().

It sets the flag $this->syntaxHighLight to true and the template string is parsed. The flag activates the addi-
tional highlighting functionality during the process of parsing. Finally the method syntaxHighlight_print()
is called to format the collected results including the error messages.

Registration of highlighted parts of lines is done during parsing by the method regHighLight() if the above flag
is set. The parts are collected into

• $this->highLightData

• $this->highLightData_bracelevel

Both arrays count per line, the first one the higlighted sections of the line, the second one the depth of brace nesting.

4.1.6 Breakpoints

A breakpoint is a line number in $this->breakPointLN to break the execution of the rendering. The method
parseSub() returns with a marker [_BREAK]. This marker stops the further execution of the main loop in
parse().

4.2 TemplateService

TemplateService is a service that makes use of the parser. A main task of TemplateService is, to cache the
rendered template for different combinations of conditions of a page.

4.3 ExtendedTemplateService

The class ExtendedTemplateService contains method for the TS module in TYPO3 backend. It extends Tem-
plateService.

8 Chapter 4. Research

CHAPTER 5

Lessons Learned

The overall time to parse the TypoScript of a website takes just a few milliseconds. It is not a critical part of the overall
page rendering time. Yet the development of this extension was also focused on performance.

5.1 Time to parse the templates vs. time to parse TypoScript

When measured with the TYPO3 core time tracker (admin panel) the template parsing takes a few hundred millisec-
onds. When measuring and summing up all calls to the TypoScript parse function (TypoScriptParser::parse()) it takes
just a few milliseconds. The difference is most likley to be explained by I/O calls to read the templates.

5.2 Non-Recursive Parser

The Non-Recursive Parser is the approach taken by this parser. The whole rendering happens within one
function by using simple loop structures. Calls to itself or other methods are avoided as far as reasonable. This turns
out to be twice as fast as the recursive Original TypoScript Parser.

5.3 Original TypoScript Parser

The original parser of the TYPO3 core uses recursive calls to handle the nesting of the braces of the object name
pathes.

5.4 JSON Parser

The idea of the JSON Parser was, to use the PHP function json_decode to create the large TypoScript tree
consisting of hundreds of PHP arrays on the binary level. TypoScript was rewritten to a valid JSON string as input.

Unfortunately json_decode does merging but not recursive merging. As overwriting is a feature of TypoScript
this requires to prepare the JSON rendering by any approach to do the overwriting in advance. An array was created,
containing the full object path as key and the value as value to solve this. Although this creates no nested tree, it takes
time.

Together with the conversion to a JSON string in the second step, there is no advantage in speed. Taking the non-
recursive approach to handle the two steps, it ends up in a similar speed as the Original TypoScript Parser.

9

TYPO3 Documentation, Release 1.0.0

10 Chapter 5. Lessons Learned

CHAPTER 6

Known Issues

6.1 No Exceptions are Thrown

The TypoScript production parser currently doesn’t throw execptions. It expects valid TS as input. The syntax higlight-
ing parser is designed to inspect TS for mistakes.

The original parser doesn’t throw exceptions either. Modules of the backend are not prepared to catch exeptions from
the parser and break if execeptions would be thrown from insane TS.

6.2 Intolerant for Insane TS

The TypoScript production parser will silently break, if feed with insane TS. It is optimized for speed and is less
tolerant for insane TS than the origional parser.

This means in rare cases code that works for the original parser may break with the TypoScript production parser. Use
the syntax highlighting parser to fix the TS code.

11

	Introduction
	What it is not
	No Boost in Performance

	What it is
	Standalone Usage
	Improving the error detection
	New Architecture
	Condition Preprocessor
	Public Presentation

	Differences

	Screenshots
	Line numbering
	Types of errors

	Administration
	Technical Implementation

	Research
	CoreTypoScriptParserTyposcriptParser
	Overview
	Conditions
	Line numbering
	Error handling
	Syntax highlighting
	Breakpoints

	TemplateService
	ExtendedTemplateService

	Lessons Learned
	Time to parse the templates vs. time to parse TypoScript
	Non-Recursive Parser
	Original TypoScript Parser
	JSON Parser

	Known Issues
	No Exceptions are Thrown
	Intolerant for Insane TS

